50 research outputs found

    Privacy-certification standards for extended-reality devices and services

    Get PDF
    In this position paper, we discuss the need for, and potential requirements for privacy certification standards for extended-reality devices and related services. We begin by presenting motivations, before discussing related efforts. We then review the issue of certification as a research problem and identify key requirements. Finally, we out-line key recommendations for how these might feed into a grander roadmap for privacy and security research

    A case study evaluation: perceptually accurate textured surface models

    Get PDF
    This paper evaluates a new method for capturing surfaces with variations in albedo, height, and local orientation using a standard digital camera with three flash units. Similar to other approaches, captured areas are assumed to be globally flat and largely diffuse. Fortunately, this encompasses a wide array of interesting surfaces, including most materials found in the built environment, e.g., masonry, fabrics, floor coverings, and textured paints. We present a case study of naïve subjects who found that surfaces captured with our method, when rendered under novel lighting and view conditions, were statistically indistinguishable from photographs. This is a significant improvement over previous methods, to which our results are also compared. © 2009 ACM

    BRDF Representation and Acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    Transfer of albedo and local depth variation to photo-textures

    Get PDF
    Acquisition of displacement and albedo maps for full building façades is a difficult problem and traditionally achieved through a labor intensive artistic process. In this paper, we present a material appearance transfer method, Transfer by Analogy, designed to infer surface detail and diffuse reflectance for textured surfaces like the present in building façades. We begin by acquiring small exemplars (displacement and albedo maps), in accessible areas, where capture conditions can be controlled. We then transfer these properties to a complete phototexture constructed from reference images and captured under diffuse daylight illumination. Our approach allows super-resolution inference of albedo and displacement from information in the photo-texture. When transferring appearance from multiple exemplars to façades containing multiple materials, our approach also sidesteps the need for segmentation. We show how we use these methods to create relightable models with a high degree of texture detail, reproducing the visually rich self-shadowing effects that would normally be difficult to capture using just simple consumer equipment. Copyright © 2012 by the Association for Computing Machinery, Inc

    Woven fabric model creation from a single image

    Get PDF
    We present a fast, novel image-based technique for reverse engineering woven fabrics at a yarn level. These models can be used in a wide range of interior design and visual special effects applications. To recover our pseudo-Bidirectional Texture Function (BTF), we estimate the three-dimensional (3D) structure and a set of yarn parameters (e.g., yarnwidth, yarn crossovers) from spatial and frequency domain cues. Drawing inspiration from previous work [Zhao et al. 2012], we solve for the woven fabric pattern and from this build a dataset. In contrast, however, we use a combination of image space analysis and frequency domain analysis, and, in challenging cases, match image statistics with those from previously captured known patterns. Our method determines, from a single digital image, captured with a digital single-lens reflex (DSLR) camera under controlled uniform lighting, thewoven cloth structure, depth, and albedo, thus removing the need for separately measured depth data. The focus of this work is on the rapid acquisition of woven cloth structure and therefore we use standard approaches to render the results. Our pipeline first estimates the weave pattern, yarn characteristics, and noise statistics using a novel combination of low-level image processing and Fourier analysis. Next, we estimate a 3D structure for the fabric sample using a first-order Markov chain and our estimated noise model as input, also deriving a depth map and an albedo. Our volumetric textile model includes information about the 3D path of the center of the yarns, their variable width, and hence the volume occupied by the yarns, and colors. We demonstrate the efficacy of our approach through comparison images of test scenes rendered using (a) the original photograph, (b) the segmented image, (c) the estimated weave pattern, and (d) the rendered result

    BRDF representation and acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    A perceptually validated model for surface depth hallucination

    Get PDF
    Capturing detailed surface geometry currently requires specialized equipment such as laser range scanners, which despite their high accuracy, leave gaps in the surfaces that must be reconciled with photographic capture for relighting applications. Using only a standard digital camera and a single view, we present a method for recovering models of predominantly diffuse textured surfaces that can be plausibly relit and viewed from any angle under any illumination. Our multiscale shape-from-shading technique uses diffuse-lit/flash-lit image pairs to produce an albedo map and textured height field. Using two lighting conditions enables us to subtract one from the other to estimate albedo. In the absence of a flash-lit image of a surface for which we already have a similar exemplar pair, we approximate both albedo and diffuse shading images using histogram matching. Our depth estimation is based on local visibility. Unlike other depth-from-shading approaches, all operations are performed on the diffuse shading image in image space, and we impose no constant albedo restrictions. An experimental validation shows our method works for a broad range of textured surfaces, and viewers are frequently unable to identify our results as synthetic in a randomized presentation. Furthermore, in side-by-side comparisons, subjects found a rendering of our depth map equally plausible to one generated from a laser range scan. We see this method as a significant advance in acquiring surface detail for texturing using a standard digital camera, with applications in architecture, archaeological reconstruction, games and special effects. © 2008 ACM

    BSSRDF estimation from single images

    Get PDF
    We present a novel method to estimate an approximation of the reflectance characteristics of optically thick, homogeneous translucent materials using only a single photograph as input. First, we approximate the diffusion profile as a linear combination of piecewise constant functions, an approach that enables a linear system minimization and maximizes robustness in the presence of suboptimal input data inferred from the image. We then fit to a smoother monotonically decreasing model, ensuring continuity on its first derivative. We show the feasibility of our approach and validate it in controlled environments, comparing well against physical measurements from previous works. Next, we explore the performance of our method in uncontrolled scenarios, where neither lighting nor geometry are known. We show that these can be roughly approximated from the corresponding image by making two simple assumptions: that the object is lit by a distant light source and that it is globally convex, allowing us to capture the visual appearance of the photographed material. Compared with previous works, our technique offers an attractive balance between visual accuracy and ease of use, allowing its use in a wide range of scenarios including off-the-shelf, single images, thus extending the current repertoire of real-world data acquisition techniques

    Perceptually Validated Cross-Renderer Analytical BRDF Parameter Remapping

    Get PDF
    Material appearance of rendered objects depends on the underlying BRDF implementation used by rendering software packages. A lack of standards to exchange material parameters and data (between tools) means that artists in digital 3D prototyping and design, manually match the appearance of materials to a reference image. Since their effect on rendered output is often non-uniform and counter intuitive, selecting appropriate parameterisations for BRDF models is far from straightforward. We present a novel BRDF remapping technique, that automatically computes a mapping (BRDF Difference Probe) to match the appearance of a source material model to a target one. Through quantitative analysis, four user studies and psychometric scaling experiments, we validate our remapping framework and demonstrate that it yields a visually faithful remapping among analytical BRDFs. Most notably, our results show that even when the characteristics of the models are substantially different, such as in the case of a phenomenological model and a physically-based one, our remapped renderings are indistinguishable from the original source model

    A framework for haptic rendering of large-scale virtual environments

    No full text
    corecore